Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.687
Filtrar
1.
Nature ; 626(7997): 160-168, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233524

RESUMO

Guillain-Barré syndrome (GBS) is a rare heterogenous disorder of the peripheral nervous system, which is usually triggered by a preceding infection, and causes a potentially life-threatening progressive muscle weakness1. Although GBS is considered an autoimmune disease, the mechanisms that underlie its distinct clinical subtypes remain largely unknown. Here, by combining in vitro T cell screening, single-cell RNA sequencing and T cell receptor (TCR) sequencing, we identify autoreactive memory CD4+ cells, that show a cytotoxic T helper 1 (TH1)-like phenotype, and rare CD8+ T cells that target myelin antigens of the peripheral nerves in patients with the demyelinating disease variant. We characterized more than 1,000 autoreactive single T cell clones, which revealed a polyclonal TCR repertoire, short CDR3ß lengths, preferential HLA-DR restrictions and recognition of immunodominant epitopes. We found that autoreactive TCRß clonotypes were expanded in the blood of the same patient at distinct disease stages and, notably, that they were shared in the blood and the cerebrospinal fluid across different patients with GBS, but not in control individuals. Finally, we identified myelin-reactive T cells in the nerve biopsy from one patient, which indicates that these cells contribute directly to disease pathophysiology. Collectively, our data provide clear evidence of autoreactive T cell immunity in a subset of patients with GBS, and open new perspectives in the field of inflammatory peripheral neuropathies, with potential impact for biomedical applications.


Assuntos
Autoimunidade , Linfócitos T CD8-Positivos , Síndrome de Guillain-Barré , Nervos Periféricos , Doenças do Sistema Nervoso Periférico , Células Th1 , Humanos , Biópsia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Síndrome de Guillain-Barré/sangue , Síndrome de Guillain-Barré/líquido cefalorraquidiano , Síndrome de Guillain-Barré/etiologia , Síndrome de Guillain-Barré/imunologia , Antígenos HLA-DR/imunologia , Epitopos Imunodominantes/imunologia , Bainha de Mielina/imunologia , Nervos Periféricos/imunologia , Nervos Periféricos/patologia , Doenças do Sistema Nervoso Periférico/complicações , Doenças do Sistema Nervoso Periférico/imunologia , Doenças do Sistema Nervoso Periférico/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Células Th1/imunologia , Células Th1/patologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Memória Imunológica
2.
Science ; 382(6676): 1270-1276, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096385

RESUMO

Current HIV vaccines designed to stimulate CD8+ T cells have failed to induce immunologic control upon infection. The functions of vaccine-induced HIV-specific CD8+ T cells were investigated here in detail. Cytotoxic capacity was significantly lower than in HIV controllers and was not a consequence of low frequency or unaccumulated functional cytotoxic proteins. Low cytotoxic capacity was attributable to impaired degranulation in response to the low antigen levels present on HIV-infected targets. The vaccine-induced T cell receptor (TCR) repertoire was polyclonal and transduction of these TCRs conferred the same reduced functions. These results define a mechanism accounting for poor antiviral activity induced by these vaccines and suggest that an effective CD8+ T cell response may require a vaccination strategy that drives further TCR clonal selection.


Assuntos
Vacinas contra a AIDS , Degranulação Celular , Citotoxicidade Imunológica , Infecções por HIV , Linfócitos T Citotóxicos , Humanos , Vacinas contra a AIDS/imunologia , Células Clonais , Infecções por HIV/prevenção & controle , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Degranulação Celular/imunologia
3.
Inmunología (1987) ; 42(2): 38-43, Jun.-Dic. 2023. ilus
Artigo em Espanhol | IBECS | ID: ibc-231264

RESUMO

En este trabajo, recientemente publicado en la prestigiosa revista Advanced Science (Adv Sci; Weinheim, Baden-Württemberg, Germany), se ha diseñado y estudiado a nivel preclínico un anticuerpo biespecífico neutralizante (nAbs) frente al virus SARS-CoV-2 y dirigido específicamente a un receptor de células dendríticas convencionales de tipo 1 (cDC1s) para estimular específicamente la respuesta de linfocitos T citotóxicos. El trabajo surge de la colaboración de un consorcio muy amplio de grupos de investigación expertos en distintas áreas de la inmunología, biología celular, virología, biología estructural, química de proteínas y partículas, que han logrado generar un anticuerpo trimérico biespecífico, TNTDNGR-1. TNT se corresponde con las siglas en inglés para anticuerpo neutralizante en tándem trimérico, mientras que DNGR-1 es la molécula inmuno-reguladora “dendritic cell natural killer group receptor-1”, también conocida como CLEC9A. TNTDNGR-1 presenta una gran avidez frente a la región RBD (“receptor binding domain”) del virus SARS-CoV-2 y también frente al receptor DNGR-1, una lectina tipo C expresada por cDC1s. Se trata, además de una colaboración público-privada, con la participación de una compañía de biotecnología española, otorgando valor añadido al trabajo de investigación, por su potencial traslación a la clínica a corto o medio plazo. Mediante el uso de técnicas de crio-microscopía electrónica se ha comprobado que la estructura TNT , backbone de TNTDNGR-1, permite la unión simultánea a sus seis epítopos en la proteína S (del inglés spike) del SARS-CoV-2, dos por cada RBD, dotándola de una interacción neutralizante de alta afinidad frente al virus. ... (AU)


Assuntos
Humanos , Anticorpos Biespecíficos/imunologia , /imunologia , Linfócitos T Citotóxicos/imunologia , Células Dendríticas/imunologia , Doenças Transmissíveis/imunologia
4.
Nature ; 624(7990): 154-163, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37968405

RESUMO

CD8+ cytotoxic T cells (CTLs) orchestrate antitumour immunity and exhibit inherent heterogeneity1,2, with precursor exhausted T (Tpex) cells but not terminally exhausted T (Tex) cells capable of responding to existing immunotherapies3-7. The gene regulatory network that underlies CTL differentiation and whether Tex cell responses can be functionally reinvigorated are incompletely understood. Here we systematically mapped causal gene regulatory networks using single-cell CRISPR screens in vivo and discovered checkpoints for CTL differentiation. First, the exit from quiescence of Tpex cells initiated successive differentiation into intermediate Tex cells. This process is differentially regulated by IKAROS and ETS1, the deficiencies of which dampened and increased mTORC1-associated metabolic activities, respectively. IKAROS-deficient cells accumulated as a metabolically quiescent Tpex cell population with limited differentiation potential following immune checkpoint blockade (ICB). Conversely, targeting ETS1 improved antitumour immunity and ICB efficacy by boosting differentiation of Tpex to intermediate Tex cells and metabolic rewiring. Mechanistically, TCF-1 and BATF are the targets for IKAROS and ETS1, respectively. Second, the RBPJ-IRF1 axis promoted differentiation of intermediate Tex to terminal Tex cells. Accordingly, targeting RBPJ enhanced functional and epigenetic reprogramming of Tex cells towards the proliferative state and improved therapeutic effects and ICB efficacy. Collectively, our study reveals that promoting the exit from quiescence of Tpex cells and enriching the proliferative Tex cell state act as key modalities for antitumour effects and provides a systemic framework to integrate cell fate regulomes and reprogrammable functional determinants for cancer immunity.


Assuntos
Diferenciação Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Mutagênese , Neoplasias , Análise de Célula Única , Linfócitos T Citotóxicos , Humanos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/genética , Neoplasias/imunologia , Análise de Célula Única/métodos , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
5.
Int Immunopharmacol ; 116: 109729, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37800555

RESUMO

Adjuvants are an indispensable component of vaccines, but there are few adjuvants for human vaccines. H2 receptor blockers, inhibiting gastric acid secretion, have immune enhancement effects. Ranitidine (RAN) is a water-soluble H2 receptor blocker, and whether it has an immune-enhancing effect is still unknown. In this study, flow cytometry, western blotting, and immunofluorescence methods were used to analyze whether RAN could activate macrophage polarization to the M1 phenotype in vivo and in vitro. Here, we found that the M1 inflammatory cytokine levels and surface markers in RAW264.7 cells were upregulated by NF-κB activation, possibly through the PI3K-Akt2 signaling pathway, after RAN treatment. Endocytic function was also enhanced by feedback regulation of Akt2/GSK3ß/Dynmin1 signaling. Furthermore, to evaluate the adjuvant function of RAN, we used OVA plus RAN as a vaccine to inhibit the growth of B16-OVA tumors in mice. We also found that in the RAN adjuvant group, macrophage polarization to M1, Th1 cell differentiation, and cytotoxic T lymphocyte (CTL) activation were significantly upregulated. The tumor growth of mice was inhibited, and the survival rate of mice was significantly improved. This study provides new evidence for the mechanism by which RAN activates the immune response and is expected to provide a new strategy for the research and development of tumor vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos , Macrófagos , Neoplasias , Ranitidina , Linfócitos T Citotóxicos , Animais , Humanos , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ranitidina/farmacologia , Ranitidina/uso terapêutico , Células RAW 264.7 , Transdução de Sinais , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Vacinas , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico
6.
J Virol ; 97(11): e0132223, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37882519

RESUMO

IMPORTANCE: Chickens immunized with the infectious laryngotracheitis chicken embryo origin (CEO) vaccine (Medivac, PT Medion Farma Jaya) experience adverse reactions, hindering its safety and effective use in poultry flocks. To improve the effect of the vaccine, we sought to find a strategy to alleviate the respiratory reactions associated with the vaccine. Here, we confirmed that co-administering the CEO vaccine with chIL-2 by oral delivery led to significant alleviation of the vaccine reactions in chickens after immunization. Furthermore, we found that the co-administration of chIL-2 with the CEO vaccine reduced the clinical signs of the CEO vaccine while enhancing natural killer cells and cytotoxic T lymphocyte response to decrease viral loads in their tissues, particularly in the trachea and conjunctiva. Importantly, we demonstrated that the chIL-2 treatment can ameliorate the replication of the CEO vaccine without compromising its effectiveness. This study provides new insights into further applications of chIL-2 and a promising strategy for alleviating the adverse reaction of vaccines.


Assuntos
Galinhas , Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Interleucina-2 , Células Matadoras Naturais , Linfócitos T Citotóxicos , Vacinas Virais , Animais , Administração Oral , Galinhas/imunologia , Galinhas/virologia , Túnica Conjuntiva/virologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/imunologia , Interleucina-2/administração & dosagem , Interleucina-2/imunologia , Células Matadoras Naturais/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/prevenção & controle , Doenças Respiratórias/veterinária , Doenças Respiratórias/virologia , Linfócitos T Citotóxicos/imunologia , Traqueia/virologia , Carga Viral , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Virais/biossíntese , Vacinas Virais/imunologia
7.
Sci Rep ; 13(1): 15935, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741931

RESUMO

Sporadic inclusion body myositis (sIBM) is an idiopathic inflammatory myopathy with invasion of CD8 T cells in muscle and aggregation of proteins in the sarcoplasm. TDP-43 and p62 are two proteins that aggregate in affected muscle, and have been suggested as specific markers for sIBM over other inflammatory myopathies. TDP-43 is also mislocalised from the nucleus to the sarcoplasm in sIBM. It is not clear if inflammation precedes protein aggregation in sIBM. This study investigated if exposure to cytotoxic inflammatory cells caused TDP-43 and p62 aggregation or TDP-43 mislocalisation in cultured myotubes. TALL-104 coculture was highly cytotoxic to myotubes after 24 h. Secretion of IFNγ and TNFα were higher in cocultures compared to monocultured TALL-104 cells, indicating activation. TALL-104 cells attached to and infiltrated myotubes. There was no effect of TALL-104 coculture on TDP-43 or p62 sarcoplasmic aggregate size or frequency. However, there was decreased localisation of TDP-43 to the nucleus with TALL-104 coculture compared to control. In an in vitro setting, cytotoxic immune cells did not cause TDP-43 or p62 sarcoplasmic aggregation, suggesting cellular cytotoxicity may not trigger aggregation of these proteins. However TALL-104 coculture influenced TDP-43 localisation, suggesting cytotoxic immune cells may contribute to TDP-43 localisation shifts which is observed in sIBM.


Assuntos
Citotoxicidade Imunológica , Miosite de Corpos de Inclusão , Linfócitos T Citotóxicos , Humanos , Citoplasma , Proteínas de Ligação a DNA , Linfócitos , Fibras Musculares Esqueléticas , Miosite de Corpos de Inclusão/imunologia , Linfócitos T Citotóxicos/imunologia
8.
Front Immunol ; 14: 1199671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426662

RESUMO

Cytotoxic T lymphocytes (CTLs) play an important role in defense against infections with intracellular pathogens and anti-tumor immunity. Efficient migration is required to locate and destroy infected cells in different regions of the body. CTLs accomplish this task by differentiating into specialized subsets of effector and memory CD8 T cells that traffic to different tissues. Transforming growth factor-beta (TGFß) belongs to a large family of growth factors that elicit diverse cellular responses via canonical and non-canonical signaling pathways. Canonical SMAD-dependent signaling pathways are required to coordinate changes in homing receptor expression as CTLs traffic between different tissues. In this review, we discuss the various ways that TGFß and SMAD-dependent signaling pathways shape the cellular immune response and transcriptional programming of newly activated CTLs. As protective immunity requires access to the circulation, emphasis is placed on cellular processes that are required for cell-migration through the vasculature.


Assuntos
Transdução de Sinais , Proteínas Smad , Linfócitos T Citotóxicos , Fator de Crescimento Transformador beta , Linfócitos T Citotóxicos/imunologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/imunologia , Imunidade Celular , Humanos , Animais
9.
Science ; 380(6647): 818-823, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37228189

RESUMO

Cytotoxic T lymphocytes (CTLs) kill virus-infected and cancer cells through T cell receptor (TCR) recognition. How CTLs terminate signaling and disengage to allow serial killing has remained a mystery. TCR activation triggers membrane specialization within the immune synapse, including the production of diacylglycerol (DAG), a lipid that can induce negative membrane curvature. We found that activated TCRs were shed into DAG-enriched ectosomes at the immune synapse rather than internalized through endocytosis, suggesting that DAG may contribute to the outward budding required for ectocytosis. Budding ectosomes were endocytosed directly by target cells, thereby terminating TCR signaling and simultaneously disengaging the CTL from the target cell to allow serial killing. Thus, ectocytosis renders TCR signaling self-limiting.


Assuntos
Diglicerídeos , Exocitose , Sinapses Imunológicas , Receptores de Antígenos de Linfócitos T , Linfócitos T Citotóxicos , Divisão Celular , Membrana Celular/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Exocitose/imunologia , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/ultraestrutura , Micropartículas Derivadas de Células/imunologia , Diglicerídeos/metabolismo
10.
Nature ; 615(7953): 668-677, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890231

RESUMO

Extracellular deposition of amyloid-ß as neuritic plaques and intracellular accumulation of hyperphosphorylated, aggregated tau as neurofibrillary tangles are two of the characteristic hallmarks of Alzheimer's disease1,2. The regional progression of brain atrophy in Alzheimer's disease highly correlates with tau accumulation but not amyloid deposition3-5, and the mechanisms of tau-mediated neurodegeneration remain elusive. Innate immune responses represent a common pathway for the initiation and progression of some neurodegenerative diseases. So far, little is known about the extent or role of the adaptive immune response and its interaction with the innate immune response in the presence of amyloid-ß or tau pathology6. Here we systematically compared the immunological milieux in the brain of mice with amyloid deposition or tau aggregation and neurodegeneration. We found that mice with tauopathy but not those with amyloid deposition developed a unique innate and adaptive immune response and that depletion of microglia or T cells blocked tau-mediated neurodegeneration. Numbers of T cells, especially those of cytotoxic T cells, were markedly increased in areas with tau pathology in mice with tauopathy and in the Alzheimer's disease brain. T cell numbers correlated with the extent of neuronal loss, and the cells dynamically transformed their cellular characteristics from activated to exhausted states along with unique TCR clonal expansion. Inhibition of interferon-γ and PDCD1 signalling both significantly ameliorated brain atrophy. Our results thus reveal a tauopathy- and neurodegeneration-related immune hub involving activated microglia and T cell responses, which could serve as therapeutic targets for preventing neurodegeneration in Alzheimer's disease and primary tauopathies.


Assuntos
Encéfalo , Microglia , Emaranhados Neurofibrilares , Linfócitos T , Tauopatias , Animais , Camundongos , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Microglia/imunologia , Microglia/metabolismo , Emaranhados Neurofibrilares/imunologia , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Proteínas tau/imunologia , Proteínas tau/metabolismo , Tauopatias/imunologia , Tauopatias/metabolismo , Tauopatias/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Placa Amiloide/imunologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia , Células Clonais/imunologia , Células Clonais/metabolismo , Células Clonais/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Imunidade Inata
11.
Mol Ther ; 31(1): 90-104, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36081350

RESUMO

Immune checkpoint inhibitors (ICIs) represent a new paradigm in cancer immunotherapy, but can be largely restricted by the limited presence of CD8+ cytotoxic T lymphocytes (CTLs) in colorectal cancer (CRC) patients with microsatellite stable (MSS) tumors. Here, through next-generation sequencing, we identify microtubule-associated protein 7 domain 2 (MAP7D2) as an exploitable therapeutic maneuver to improve the efficacy of ICIs for MSS CRC therapy. In human CRC tissues, MAP7D2 expression is significantly increased in MSS CRC, and MAP7D2 adversely correlates with the presence of antitumor T lymphocytes. In vitro and in vivo experiments demonstrate that MAP7D2 knockdown significantly increases the infiltration of CD8+ CTLs, thereby inhibiting tumor progression and improving the efficacy of ICIs in MSS CRC murine models. Mechanistically, MAP7D2 interacts with MYH9 and protects it from ubiquitin-mediated degradation, subsequently decreasing the secretion of HMGB1, which suppresses the infiltration of CD8+ CTLs in MSS CRC. These findings highlight the importance of MAP7D2 in determining the infiltration of CD8+ CTLs and indicate that targeting MAP7D2 in MSS CRC may present a novel antitumor immunotherapy.


Assuntos
Neoplasias Colorretais , Proteína HMGB1 , Proteínas Associadas aos Microtúbulos , Cadeias Pesadas de Miosina , Linfócitos T Citotóxicos , Animais , Humanos , Camundongos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Proteína HMGB1/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Cadeias Pesadas de Miosina/genética , Linfócitos T Citotóxicos/imunologia , Imunoterapia
12.
Science ; 378(6625): 1194-1200, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36480602

RESUMO

Chimeric antigen receptor (CAR) costimulatory domains derived from native immune receptors steer the phenotypic output of therapeutic T cells. We constructed a library of CARs containing ~2300 synthetic costimulatory domains, built from combinations of 13 signaling motifs. These CARs promoted diverse human T cell fates, which were sensitive to motif combinations and configurations. Neural networks trained to decode the combinatorial grammar of CAR signaling motifs allowed extraction of key design rules. For example, non-native combinations of motifs that bind tumor necrosis factor receptor-associated factors (TRAFs) and phospholipase C gamma 1 (PLCγ1) enhanced cytotoxicity and stemness associated with effective tumor killing. Thus, libraries built from minimal building blocks of signaling, combined with machine learning, can efficiently guide engineering of receptors with desired phenotypes.


Assuntos
Aprendizado de Máquina , Biblioteca de Peptídeos , Receptores de Antígenos Quiméricos , Linfócitos T Citotóxicos , Humanos , Fenótipo , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/imunologia , Transdução de Sinais , Domínios Proteicos , Linfócitos T Citotóxicos/imunologia
13.
Front Immunol ; 13: 977117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353619

RESUMO

Cytotoxic CD4+ T cells (CD4-CTLs) show the presence of cytolytic granules, which include the enzymes granzyme and perforin. The cells have a pathogenic and protective role in various diseases, including cancer, viral infection, and autoimmune disease. In mice, cytotoxic CD4+ T cells express CD8αα+ and reside in the intestine (mouse CD4+CTLs; mCD4-CTLs). The population of cytotoxic CD4+ T cells in the human intestine is currently unknown. Moreover, it is unclear how cytotoxic CD4 T cells change in patients with inflammatory bowel disease (IBD). Here, we aimed to identify cytotoxic CD4+ T cells in the human intestine and analyze the characteristics of the population in patients with IBD using single-cell RNA-seq (scRNA-seq). In CD4+ T cells, granzyme and perforin expression was high in humanMAIT (hMAIT) cells and hCD4+CD8A+ T cell cluster. Both CD4 and CD8A were expressed in hTreg, hMAIT, and hCD4+CD8A+ T cell clusters. Next we performed fast gene set enrichment analysis to identify cell populations that showed homology to mCD4CTLs. The analysis identified the hCD4+CD8A+ T cell cluster (hCTL-like population; hCD4-CTL) similar to mouse CTLs. The percentage of CD4+CD8A+ T cells among the total CD4+ T cells in the inflamed intestine of the patients with Crohn's disease was significantly reduced compared with that in the noninflamed intestine of the patients. In summary, we identified cytotoxic CD4+CD8+ T cells in the small intestine of humans. The integration of the mouse and human sc-RNA-seq data analysis highlight an approach to identify human cell populations related to mouse cell populations, which may help determine the functional properties of several human cell populations in mice.


Assuntos
Linfócitos T CD8-Positivos , Doenças Inflamatórias Intestinais , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos , Granzimas/genética , Granzimas/metabolismo , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Perforina/genética , Perforina/metabolismo , Transcriptoma , Intestinos/imunologia , Linfócitos T Citotóxicos/imunologia
14.
Hum Immunol ; 83(12): 797-802, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36229378

RESUMO

Differences in outcome to COVID-19 infection in different individuals is largely attributed to genetic heterogeneity leading to differential immune responses across individuals and populations. HLA is one such genetic factor that varies across individuals leading to differences in how T-cell responses are triggered against SARS-CoV-2, directly influencing disease susceptibility. HLA alleles that influence COVID-19 outcome, by virtue of epitope binding and presentation, have been identified in cohorts worldwide. However, the heterogeneity in HLA distribution across ethnic groups limits the generality of such association. In this study, we address this limitation by comparing the recognition of CTL epitopes across HLA genotypes and ethnic groups. Using HLA allele frequency data for ethnic groups from Allele Frequency Net Database (AFND), we construct synthetic populations for each ethnic group and show that CTL epitope strength varies across HLA genotypes and populations. We also observe that HLA genotypes, in certain cases, can have high CTL epitope strengths in the absence of top-responsive HLA alleles. Finally, we show that the theoretical estimate of responsiveness and hence protection offered by a HLA allele is bound to vary across ethnic groups, due to the influence of other HLA alleles within the HLA genotype on CTL epitope recognition. This emphasizes the need for studying HLA-disease associations at the genotype level rather than at a single allele level.


Assuntos
COVID-19 , Antígenos HLA , SARS-CoV-2 , Linfócitos T Citotóxicos , Humanos , Alelos , COVID-19/etnologia , COVID-19/imunologia , Epitopos de Linfócito T , Etnicidade , Linfócitos T Citotóxicos/imunologia , Antígenos HLA/genética
15.
J Virol ; 96(19): e0081122, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36154612

RESUMO

Although many HIV-1-specific CD8+ T cell epitopes have been identified and used in various HIV-1 studies, most of these epitopes were derived from HIV-1 subtypes B and C. Only 17 well-defined epitopes, none of which were protective, have been identified for subtype A/E infection. The roles of HIV-1-specific T cells have been rarely analyzed for subtype A/E infection. In this study, we identified six novel HLA-B*15:02-restricted optimal HIV-1 subtype A/E epitopes and then analyzed the presentation of these epitopes by HIV-1 subtype A/E virus-infected cells and the T cell responses to these epitopes in treatment-naive HIV-1 subtype A/E-infected HLA-B*15:02+ Vietnamese individuals. Responders to the PolTY9 or PolLF10 epitope had a significantly lower plasma viral load (pVL) than nonresponders among HLA-B*15:02+ individuals, whereas no significant difference in pVL was found between responders to four other epitopes and nonresponders. The breadth of T cell responses to these two Pol epitopes correlated inversely with pVL. These findings suggest that HLA-B*15:02-restricted T cells specific for PolTY9 and PolLF10 contribute to the suppression of HIV-1 replication in HLA-B*15:02+ individuals. The HLA-B*15:02-associated mutation Pol266I reduced the recognition of PolTY9-specific T cells in vitro but did not affect HIV-1 replication by PolTY9-specific T cells in Pol266I mutant virus-infected individuals. These findings indicate that PolTY9-specific T cells suppress replication of the Pol266I mutant virus even though the T cells selected this mutant. This study demonstrates the effective role of T cells specific for these Pol epitopes to control circulating viruses in HIV-1 subtype A/E infection. IMPORTANCE It is expected that HIV-1-specific CD8+ T cells that effectively suppress HIV-1 replication will contribute to HIV-1 vaccine development and therapy to achieve an HIV cure. T cells specific for protective epitopes were identified in HIV-1 subtype B and C infections but not in subtype A/E infection, which is epidemic in Southeast Asia. In the present study, we identified six T cell epitopes derived from the subtype A/E virus and demonstrated that T cells specific for two Pol epitopes effectively suppressed HIV-1 replication in treatment-naive Vietnamese individuals infected with HIV-1 subtype A/E. One of these Pol protective epitopes was conserved among circulating viruses, and one escape mutation was accumulated in the other epitope. This mutation did not critically affect HIV-1 control by specific T cells in HIV-1 subtype A/E-infected individuals. This study identified two protective Pol epitopes and characterized them in cases of HIV-1 subtype A/E infection.


Assuntos
Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Infecções por HIV , HIV-1 , Replicação Viral , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Antígenos HLA-B/imunologia , Humanos , Linfócitos T Citotóxicos/imunologia , Produtos do Gene pol do Vírus da Imunodeficiência Humana/imunologia
16.
Nature ; 606(7916): 960-967, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705808

RESUMO

Among the caspases that cause regulated cell death, a unique function for caspase-7 has remained elusive. Caspase-3 performs apoptosis, whereas caspase-7 is typically considered an inefficient back-up. Caspase-1 activates gasdermin D pores to lyse the cell; however, caspase-1 also activates caspase-7 for unknown reasons1. Caspases can also trigger cell-type-specific death responses; for example, caspase-1 causes the extrusion of intestinal epithelial cell (IECs) in response to infection with Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium)2,3. Here we show in both organoids and mice that caspase-7-deficient IECs do not complete extrusion. Mechanistically, caspase-7 counteracts gasdermin D pores and preserves cell integrity by cleaving and activating acid sphingomyelinase (ASM), which thereby generates copious amounts of ceramide to enable enhanced membrane repair. This provides time to complete the process of IEC extrusion. In parallel, we also show that caspase-7 and ASM cleavage are required to clear Chromobacterium violaceum and Listeria monocytogenes after perforin-pore-mediated attack by natural killer cells or cytotoxic T lymphocytes, which normally causes apoptosis in infected hepatocytes. Therefore, caspase-7 is not a conventional executioner but instead is a death facilitator that delays pore-driven lysis so that more-specialized processes, such as extrusion or apoptosis, can be completed before cell death. Cells must put their affairs in order before they die.


Assuntos
Caspase 7 , Perforina , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Esfingomielina Fosfodiesterase , Animais , Apoptose , Caspase 7/metabolismo , Chromobacterium/imunologia , Células Epiteliais/citologia , Intestinos/citologia , Células Matadoras Naturais/imunologia , Listeria monocytogenes/imunologia , Camundongos , Organoides , Perforina/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Linfócitos T Citotóxicos/imunologia
17.
Mucosal Immunol ; 15(5): 1028-1039, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35729204

RESUMO

The lack of clinically applicable mucosal adjuvants is a major hurdle in designing effective mucosal vaccines. We hereby report that the calcium-binding protein S100A4, which regulates a wide range of biological functions, is a potent mucosal adjuvant in mice for co-administered antigens, including the SARS-CoV-2 spike protein, with comparable or even superior efficacy as cholera toxin but without causing any adverse reactions. Intranasal immunization with recombinant S100A4 elicited antigen-specific antibody and pulmonary cytotoxic T cell responses, and these responses were remarkably sustained for longer than 6 months. As a self-protein, S100A4 did not stimulate antibody responses against itself, a quality desired of adjuvants. S100A4 prolonged nasal residence of intranasally delivered antigens and promoted migration of antigen-presenting cells. S100A4-pulsed dendritic cells potently activated cognate T cells. Furthermore, S100A4 induced strong germinal center responses revealed by both microscopy and mass spectrometry, a novel label-free technique for measuring germinal center activity. Importantly, S100A4 did not induce olfactory bulb inflammation after nasal delivery, which is often a safety concern for nasal vaccination. In conclusion, S100A4 may be a promising adjuvant in formulating mucosal vaccines, including vaccines against pathogens that infect via the respiratory tract, such as SARS-CoV-2.


Assuntos
Adjuvantes Imunológicos , Imunidade nas Mucosas , Proteína A4 de Ligação a Cálcio da Família S100 , Vacinas , Administração Intranasal , Animais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Proteína A4 de Ligação a Cálcio da Família S100/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T Citotóxicos/imunologia
18.
Cancer Discov ; 12(8): 1960-1983, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35723626

RESUMO

Although inflammatory mechanisms driving hepatocellular carcinoma (HCC) have been proposed, the regulators of anticancer immunity in HCC remain poorly understood. We found that IL27 receptor (IL27R) signaling promotes HCC development in vivo. High IL27EBI3 cytokine or IL27RA expression correlated with poor prognosis for patients with HCC. Loss of IL27R suppressed HCC in vivo in two different models of hepatocarcinogenesis. Mechanistically, IL27R sig-naling within the tumor microenvironment restrains the cytotoxicity of innate cytotoxic lymphocytes. IL27R ablation enhanced their accumulation and activation, whereas depletion or functional impairment of innate cytotoxic cells abrogated the effect of IL27R disruption. Pharmacologic neutralization of IL27 signaling increased infiltration of innate cytotoxic lymphocytes with upregulated cytotoxic molecules and reduced HCC development. Our data reveal an unexpected role of IL27R signaling as an immunologic checkpoint regulating innate cytotoxic lymphocytes and promoting HCC of different etiologies, thus indicating a therapeutic potential for IL27 pathway blockade in HCC. SIGNIFICANCE: HCC, the most common form of liver cancer, is characterized by a poor survival rate and limited treatment options. The discovery of a novel IL27-dependent mechanism controlling anticancer cytotoxic immune response will pave the road for new treatment options for this devastating disease. This article is highlighted in the In This Issue feature, p. 1825.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Interleucina-27 , Neoplasias Hepáticas , Linfócitos T Citotóxicos , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Interleucina-27/imunologia , Interleucinas/imunologia , Neoplasias Hepáticas/imunologia , Prognóstico , Receptores de Interleucina/imunologia , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia
19.
Biochem Biophys Res Commun ; 613: 26-33, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35526485

RESUMO

CD8+ cytotoxic T lymphocytes (CTLs) and CD4+ helper T (Th) cells play a critical role in protective immune responses to tumor cells. Particularly, Th9 cells exert anti-tumor activity by producing IL-9. TNF receptor (TNFR)-associated factor 6 (TRAF6) is an adaptor protein that mediates the signals from both the TNFR superfamily and Toll-like receptors (TLRs). We have previously reported that T cell-specific TRAF6-deficent (TRAF6ΔT) mice spontaneously developed systemic inflammatory diseases. However, the physiological role of TRAF6 in T cells in controlling anti-tumor immune responses remains largely unclear. Here, we found that tumor formation of syngeneic colon cancer cells inoculated in TRAF6ΔT mice was accelerated compared to that in control mice. Although TRAF6-deficient naïve T cells showed enhanced differentiation of Th9 cells in vitro, these T cells produced lower amounts of IL-9 in response to a specific antigen. Moreover, CD4+ tumor-infiltrating lymphocytes (TILs) in tumor-bearing TRAF6ΔT mice expressed lower levels of IL-9 than those in WT mice. Importantly, administration of recombinant IL-9 (rIL-9) strongly suppressed tumor progression in TRAF6ΔT mice. Furthermore, expression levels of the T-box transcription factor Eomesodermin (Eomes) and its target molecules IFN-γ, granzyme B and perforin, as well as cytotoxic activity, were reduced in TRAF6-deficient CD8+ T cells in vitro. TRAF6-deficient T cells were found to express significantly increased levels of immune checkpoint molecules, CTLA-4 and PD-1 on the cell surface. These results demonstrate that the TRAF6 signaling pathway in T cells regulates anti-tumor immunity through the activation of tumor specific Th9 cells and CTLs in a tumor microenvironment.


Assuntos
Linfócitos T Citotóxicos , Fator 6 Associado a Receptor de TNF , Animais , Interleucina-9/imunologia , Interleucina-9/farmacologia , Camundongos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Fator 6 Associado a Receptor de TNF/imunologia
20.
Cancer Immunol Res ; 10(5): 543, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35436335

RESUMO

Three types of cytotoxic effector cells can kill tumor cells: innate natural killer (NK) cells, CD8+ CTL, and γδ T cells. In this issue, Walwyn-Brown and colleagues report new insights into the interplay between these three cell types that are integral to antitumor immunity, finding that γδ T cells can specifically suppress NK cells but not CD8+ CTLs. These results are relevant in view of the so far limited efficacy of γδ T-cell immunotherapy. See related article by Walwyn-Brown et al., p. 558 (3).


Assuntos
Linfócitos Intraepiteliais , Linfócitos T Citotóxicos , Imunoterapia , Células Matadoras Naturais/imunologia , Linfócitos T Citotóxicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...